Graphs - ADTs and Implementations

Applications of Graphs

> Electronic circuits

- Printed circuit board
\square Integrated circuit
> Transportation networks
- Highway network
\square Flight network
> Computer networks
- Local area network
\square Internet
\square Web
> Databases
\square Entity-relationship diagram

Outcomes

$>$ By understanding this lecture, you should be able to:
\square Define basic terminology of graphs.
\square Use a graph ADT for appropriate applications.
\square Program standard implementations of the graph ADT.
\square Understand advantages and disadvantages of these implementations, in terms of space and run time.

Outline

$>$ Definitions
> Graph ADT
> Implementations

Outline

> Definitions
> Graph ADT
> Implementations

Edge Types

$>$ Directed edge
\square ordered pair of vertices $(\boldsymbol{u}, \boldsymbol{v})$
\square first vertex \boldsymbol{u} is the origin
\square second vertex v is the destination
\square e.g., a flight
> Undirected edge
\square unordered pair of vertices $(\boldsymbol{u}, \boldsymbol{v})$
849
\square e.g., a flight route
$>$ Directed graph (Digraph)
\square all the edges are directed
\square e.g., route network
> Undirected graph
\square all the edges are undirected
\square e.g., flight network

Vertices and Edges

> End vertices (or endpoints) of an edge
$\square U$ and V are the endpoints of a
$>$ Edges incident on a vertex
$\square \mathrm{a}, \mathrm{d}$, and b are incident on V
> Adjacent vertices
$\square U$ and V are adjacent
> Degree of a vertex
$\square X$ has degree 5
> Parallel edges
$\square \mathrm{h}$ and i are parallel edges
> Self-loop
$\square \mathrm{j}$ is a self-loop

Graphs

$>$ A graph is a pair $(\boldsymbol{V}, \boldsymbol{E})$, where
$\square V$ is a set of nodes, called vertices
$\square \boldsymbol{E}$ is a collection of pairs of vertices, called edges
\square Vertices and edges are positions and store elements
> Example:
\square A vertex represents an airport and stores the three-letter airport code
\square An edge represents a flight route between two airports and stores the mileage of the route

Paths

> Path
\square sequence of alternating vertices and edges
\square begins with a vertex
\square ends with a vertex
\square each edge is preceded and followed by its endpoints
> Simple path
\square path such that all its vertices and edges are distinct
> Examples
$\square P_{1}=(V, b, X, h, Z)$ is a simple path
$\square P_{2}=(U, c, W, e, X, g, Y, f, W, d, V)$ is a path that is not simple

Cycles

> Cycle
\square circular sequence of alternating vertices and edges
\square each edge is preceded and followed by its endpoints
> Simple cycle
\square cycle such that all its vertices and edges are distinct
> Examples
$\square C_{1}=(V, b, X, g, Y, f, W, c, U, a, V)$ is a simple cycle
$\square C_{2}=(U, c, W, e, X, g, Y, f, W, d, V, a, U)$
 is a cycle that is not simple

Subgraphs

> A subgraph S of a graph G is a graph such that
\square The vertices of S are a subset of the vertices of G
\square The edges of S are a subset of the edges of G
> A spanning subgraph of G is a subgraph that contains all the vertices of G

Subgraph

Spanning subgraph

Connectivity

$>$ A graph is connected if there is a path between every pair of vertices
> A connected component of a graph G is a maximal connected subgraph of G

Connected graph

Non connected graph with two connected components

Trees

A tree is a connected, acyclic, undirected graph.
A forest is a set of trees (not necessarily connected)

Spanning Trees

> A spanning tree of a connected graph is a spanning subgraph that is a tree
$>$ A spanning tree is not unique unless the graph is a tree
> Spanning trees have applications to the design of communication networks
$>$ A spanning forest of a graph is a spanning subgraph that is a forest

Spanning tree

Reachability in Directed Graphs

$>$ A node w is reachable from v if there is a directed path originating at v and terminating at w .
$\square E$ is reachable from B
$\square B$ is not reachable from E

Properties

Property 1

$\boldsymbol{\Sigma}_{\boldsymbol{v}} \operatorname{deg}(\boldsymbol{v})=2|\boldsymbol{E}|$
Proof: each edge is counted twice

Notation

| $\boldsymbol{V} \mid$ number of vertices
$|E| \quad$ number of edges $\operatorname{deg}(\boldsymbol{v})$ degree of vertex \boldsymbol{v}

Property 2
In an undirected graph with no self-loops and no multiple edges

$$
|\boldsymbol{E}| \leq|\boldsymbol{V}|(|\boldsymbol{V}|-1) / 2
$$

Proof: each vertex has degree at most (|V|-1)

Example

- $|\boldsymbol{V}|=4$
- $|E|=6$
- $\operatorname{deg}(\boldsymbol{v})=3$

Q: What is the bound for a digraph?
$A:|E| \leq|V|(|V|-1)$

Outline

> Definitions
> Graph ADT
> Implementations

Main Methods of the Graph ADT

> Accessor methods
DnumVertices(): Returns the number of vertices in the graph
\square numEdges(): Returns the number of vertices in the graph
$\square g e t E d g e(u, v)$: Returns edge from u to v
\square endVertices(e): an array of the two endvertices of e
$\square o p p o s i t e(\mathrm{v}, \mathrm{e})$: the vertex opposite to v on e
DoutDegree(v): Returns number of outgoing edges
DinDegree(v): Returns number of incoming edges

Main Methods of the Graph ADT

> Update methods
\square insertVertex(x): insert a vertex storing element x
$\square i n s e r t E d g e(u, v, x)$: insert an edge (u,v) storing element x
\square removeVertex(v): remove vertex v (and its incident edges)
\square removeEdge(e): remove edge e

Main Methods of the Graph ADT

$>$ Iterator methods
DincomingEdges(v): Incoming edges to v
DoutgoingEdges(v): Outgoing edges from v
Dvertices(): all vertices in the graph
Dedges(): all edges in the graph

Outline

$>$ Definitions
> Graph ADT
> Implementations

GTG Implementation (net.datastructures)

$>$ There are many ways to implement the Graph ADT.
$>$ We will follow the textbook implementation.

Vertex and Edge Lists

$>$ A graph consists of a collection of vertices V and a collection of edges E .
$>$ Each of these will be represented as a Positional List (Ch.7.3).
> In net.datastructures, Positional Lists are implemented as doubly-linked lists.

Vertices and Edges

$>$ Each vertex v stores an element containing information about the vertex.
\square For example, if the graph represents course dependencies, the vertex element might store the course number.
$>$ Each edge e stores an element containing information about the edge.
\square e.g., pre-requisite, co-requisite.
$>$ In addition, each edge must store references to the vertices it connects.

Vertices and Edges

> To facilitate efficient removal of vertices and edges, we will make both location aware:

A reference to the Position in the Positional List will be stored in the element.

Edge List Implementation

> This organization yields an Edge List Structure

Performance of Edge List Implementation

> Edge List implementation does not provide efficient access to edge information from vertex list.

$\boldsymbol{n} \boldsymbol{n}$ vertices, \boldsymbol{m} edges - no parallel edges	Edge				
List		$	$	Space	$\boldsymbol{n}+\boldsymbol{m}$
:---	:---:				
incomingEdges (\boldsymbol{v}) outgoingEdges (\boldsymbol{v})	\boldsymbol{m}				
getEdge $(\boldsymbol{u}, \boldsymbol{v})$	1				
insertVertex (\boldsymbol{x})	1				
insertEdge $(\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{x})$	\boldsymbol{m}				
removeVertex (\boldsymbol{v})	1				
removeEdge (\boldsymbol{e})					

Other Graph Implementations

$>$ Can we come up with a graph implementation that improves the efficiency of these basic operations?
\square Adjacency List
\square Adjacency Map
\square Adjacency Matrix

Other Graph Implementations

$>$ Can we come up with a graph implementation that improves the efficiency of these basic operations?
\square Adjacency List
\square Adjacency Map
\square Adjacency Matrix

Adjacency List Implementation

> An Adjacency List implementation augments each vertex element with Positional Lists of incoming and outgoing edges.

Vertex List Adjacency Lists

Adjacency List Implementation

> An Adjacency List implementation augments each vertex element with lists of incoming and outgoing edges.

Performance of Adjacency List Implementation

> Adjacency List implementation improves efficiency without increasing space requirements.

- n vertices, m edges - no parallel edges - no self-loops	Edge List	Adjacency List
Space	$\boldsymbol{n}+\boldsymbol{m}$	$\boldsymbol{n}+\boldsymbol{m}$
incomingEdges (v) outgoingEdges(v)	m	$\operatorname{deg}(\boldsymbol{v})$
getEdge($\boldsymbol{u}, \boldsymbol{v}$)	m	$\min (\operatorname{deg}(\boldsymbol{u}), \operatorname{deg}(\boldsymbol{v})$)
insertVertex (\boldsymbol{x})	1	1
insertEdge($\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{x}$)	1	1
removeVertex(v)	m	$\operatorname{deg}(\boldsymbol{v})$
removeEdge(\boldsymbol{e})	1	1

Other Graph Implementations

$>$ Can we come up with a graph implementation that improves the efficiency of these basic operations?
\square Adjacency List
\square Adjacency Map
\square Adjacency Matrix

Adjacency Map Implementation

> An Adjacency Map implementation augments each vertex element with an Adjacency Map of edges
\square Each entry consists of:
\diamond Key = opposite vertex
\diamond Value = edge

- Implemented as a hash table.

Vertex List Adjacency Maps

Performance of Adjacency Map Implementation

> Adjacency Map implementation improves expected run time of getEdge(u,v):

\boldsymbol{n} n vertices, \boldsymbol{m} edges • no parallel edges	Edge List	Adjacency List	Adjacency Map
Space	$\boldsymbol{n}+\boldsymbol{m}$	$\boldsymbol{n}+\boldsymbol{m}$	$\boldsymbol{n}+\boldsymbol{m}$
incomingEdges (\boldsymbol{v}), outgoingEdges($\boldsymbol{v})$	\boldsymbol{m}	$\operatorname{deg}(\boldsymbol{v})$	$\operatorname{deg}(\boldsymbol{v})$
getEdge($\boldsymbol{u}, \boldsymbol{v})$	\boldsymbol{m}	$\min (\operatorname{deg}(\boldsymbol{u}), \operatorname{deg}(\boldsymbol{v}))$	$1(\exp)$
insertVertex($\boldsymbol{x})$	1	1	1
insertEdge $(\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{x})$	1	1	$1(\exp)$
removeVertex (\boldsymbol{v})	\boldsymbol{m}	$\operatorname{deg}(\boldsymbol{v})$	$\operatorname{deg}(\boldsymbol{v})$
removeEdge (\boldsymbol{e})	1	1	$1(\exp)$

Other Graph Implementations

$>$ Can we come up with a graph implementation that improves the efficiency of these basic operations?
\square Adjacency List
\square Adjacency Map
\square Adjacency Matrix

Adjacency Matrix Implementation

> In an Adjacency Matrix implementation we map each of the n vertices to an integer index from [0...n-1].
$>$ Then a $2 \mathrm{D} \mathrm{n} \times \mathrm{n}$ array A is maintained:
\square If edge (i, j) exists, $\mathrm{A}[\mathrm{i}, \mathrm{j}]$ stores a reference to the edge.
If edge (i, j) does not exist, $\mathrm{A}[\mathrm{i}, \mathrm{j}]$ is set to null.

Vertex List
Adjacency Matrix

Adjacency Matrix Structure

Performance of Adjacency Matrix Implementation

> Requires more space.
$>$ Slow to get incoming / outgoing edges
$>$ Very slow to insert or remove a vertex (array must be resized)

$\boldsymbol{n} \boldsymbol{n}$ vertices, \boldsymbol{m} edges \boldsymbol{n} no parallel edges no self-loops	Edge List	Adjacency List	Adjacency Map	Adjacency Matrix
Space	$\boldsymbol{n}+\boldsymbol{m}$	$\boldsymbol{n}+\boldsymbol{m}$	$\boldsymbol{n}+\boldsymbol{m}$	\boldsymbol{n}^{2}
incomingEdges (\boldsymbol{v}), outgoingEdges (\boldsymbol{v})	\boldsymbol{m}	$\operatorname{deg}(\boldsymbol{v})$	$\operatorname{deg}(\boldsymbol{v})$	\boldsymbol{n}
getEdge $(\boldsymbol{u}, \boldsymbol{v})$	\boldsymbol{m}	$\min (\operatorname{deg}(\boldsymbol{u}), \operatorname{deg}(\boldsymbol{v}))$	1 (exp.)	1
insertVertex (\boldsymbol{x})	1	1	1	\boldsymbol{n}^{2}
insertEdge $(\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{x})$	1	1	1 (exp.)	1
removeVertex (\boldsymbol{v})	\boldsymbol{m}	$\operatorname{deg}(\boldsymbol{v})$	$\operatorname{deg}(\boldsymbol{v})$	\boldsymbol{n}^{2}
removeEdge (\boldsymbol{e})	1	1	1 (exp.)	1

A4Q2: Course Prerequisites

$>$ In most post-secondary programs, courses have prerequisites.
> For example, you cannot take EECS 3101 until you have passed EECS 2011.
$>$ How can we represent such a system of dependencies?
$>$ A natural choice is a directed graph.
\square Each vertex represents a course
\square Each directed edge represents a prerequisite
$\diamond A$ directed edge from Course U to Course V means that Course U must be taken before Course V .

A4Q2: Course Prerequisites

$>$ We also want to be able to find the information for a particular course quickly.
$>$ The course number provides a convenient key that can be used to organize course records in a sorted map, implemented as a binary search tree (cf. A3Q1).
$>$ Thus it makes sense to represent courses using both a sorted map (for efficient access) and a directed graph (to represent dependencies).
$>$ By storing a reference to the directed graph vertex for a course in the sorted map, we can efficiently access course dependencies.

A4Q2: Course Prerequisites

A4Q2: Course Prerequisites

$>$ It is important that the course prerequisite graph be a directed acyclic graph (DAG). Why?

A4Q2: Course Prerequisites

$>$ In this question, you are provided with a basic implementation of a system to represent courses and dependencies.
$>$ Methods for adding courses and getting prerequisites are provided.
$>$ You need only write the method for adding a prerequisite.
$>$ This method will use a depth-first-search algorithm (also provided) that can be used to prevent the addition of prerequisites that introduce cycles.

A4Q2: Implementation using net.datastructures

> We use the TreeMap class to represent the sorted map (cf. A3Q1).

Key: 2011

Value:

- Number: 2011
- Name: "Data Structures"
- Vertex:

A4Q2: Implementation using net.datastructures

$>$ We use the AdjacencyMapGraph class to represent the directed graph.
$>$ This implementation uses ProbeHashMap, a linear probe hash table, to represent the incoming and outgoing edges for each vertex.

Outline

$>$ Definitions
> Graph ADT
> Implementations

Outcomes

$>$ By understanding this lecture, you should be able to:
\square Define basic terminology of graphs.
\square Use a graph ADT for appropriate applications.
\square Program standard implementations of the graph ADT.
\square Understand advantages and disadvantages of these implementations, in terms of space and run time.

