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Graphs – ADTs and Implementations 
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Applications of Graphs 
Ø  Electronic circuits 

q  Printed circuit board 

q  Integrated circuit 

Ø  Transportation networks 
q  Highway network 

q  Flight network 

Ø  Computer networks 
q  Local area network 

q  Internet 

q Web 

Ø  Databases 
q  Entity-relationship diagram 
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Outcomes 

Ø By understanding this lecture, you should be able to: 
q Define basic terminology of graphs. 

q Use a graph ADT for appropriate applications. 

q Program standard implementations of the graph ADT. 

q Understand advantages and disadvantages of these 
implementations, in terms of space and run time. 
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Ø Definitions 
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Ø  Implementations 
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Edge Types 
Ø  Directed edge 

q  ordered pair of vertices (u,v) 

q  first vertex u is the origin 

q  second vertex v is the destination 

q  e.g., a flight 

Ø  Undirected edge 
q  unordered pair of vertices (u,v) 

q  e.g., a flight route 

Ø  Directed graph (Digraph) 
q  all the edges are directed 

q  e.g., route network 

Ø  Undirected graph 
q  all the edges are undirected 

q  e.g., flight network 

ORD PVD 

flight 
AA 1206 

ORD PVD 

849 
miles 



Last Updated:  6 April 2015 
EECS 2011 
Prof. J. Elder - 7 - 

Vertices and Edges 
Ø  End vertices (or endpoints) of 

an edge 
q  U and V are the endpoints of a 

Ø  Edges incident on a vertex 
q  a, d, and b are incident on V 

Ø  Adjacent vertices 
q  U and V are adjacent 

Ø  Degree of a vertex 
q  X has degree 5  

Ø  Parallel edges 
q  h and i are parallel edges 

Ø  Self-loop 
q  j is a self-loop 
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Graphs  
Ø  A graph is a pair (V, E), where 

q  V is a set of nodes, called vertices 

q  E is a collection of pairs of vertices, called edges 

q  Vertices and edges are positions and store elements 

Ø  Example: 
q  A vertex represents an airport and stores the three-letter airport code 

q  An edge represents a flight route between two airports and stores the 
mileage of the route 
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P1 

Paths 

Ø  Path 
q  sequence of alternating 

vertices and edges  

q  begins with a vertex 

q  ends with a vertex 

q  each edge is preceded and 
followed by its endpoints 

Ø  Simple path 
q  path such that all its vertices 

and edges are distinct 

Ø  Examples 
q  P1=(V,b,X,h,Z) is a simple path 

q  P2=(U,c,W,e,X,g,Y,f,W,d,V) is a 
path that is not simple 
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Cycles 

Ø  Cycle 
q  circular sequence of alternating 

vertices and edges  

q  each edge is preceded and 
followed by its endpoints 

Ø  Simple cycle 
q  cycle such that all its vertices 

and edges are distinct 

Ø  Examples 
q  C1=(V,b,X,g,Y,f,W,c,U,a,V) is a 

simple cycle 

q  C2=(U,c,W,e,X,g,Y,f,W,d,V,a,U) 
is a cycle that is not simple 
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Subgraphs 

Ø A subgraph S of a graph 
G is a graph such that  
q The vertices of S are a 

subset of the vertices of G 

q The edges of S are a 
subset of the edges of G 

Ø A spanning subgraph of 
G is a subgraph that 
contains all the vertices of 
G 

Subgraph 

Spanning subgraph 
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Connectivity 
Ø A graph is connected if 

there is a path between 
every pair of vertices 

Ø A connected component 
of a graph G is a maximal 
connected subgraph of G 

Connected graph 

Non connected graph with two 
connected components 
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Trees 

Tree Forest Graph with Cycle 

A tree is a connected, acyclic, undirected graph. 

A forest is a set of trees (not necessarily connected) 
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Spanning Trees  

Ø  A spanning tree of a connected 
graph is a spanning subgraph that 
is a tree 

Ø  A spanning tree is not unique 
unless the graph is a tree 

Ø  Spanning trees have applications 
to the design of communication 
networks 

Ø  A spanning forest of a graph is a 
spanning subgraph that is a forest 

Graph 

Spanning tree 
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Reachability in Directed Graphs 
Ø A node w is reachable from v if there is a directed path 

originating at v and terminating at w. 
q E is reachable from B 

q B is not reachable from E 
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Properties 

Notation 
   |V|  number of vertices 

   |E|  number of edges 

deg(v)  degree of vertex v 

Property 1 

Σv deg(v) = 2|E| 

Proof: each edge is counted 
twice 

Property 2 
In an undirected graph with no 

self-loops and no multiple 
edges 

   |E| ≤ |V| (|V| - 1)/2 

Proof: each vertex has degree 
at most (|V| – 1) 

Example 
n  |V| = 4 
n  |E| = 6 
n  deg(v) = 3 

  
A :  E ≤ V (V −1)
Q:  What is the bound for a digraph? 
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Outline 
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Main Methods of the Graph ADT 

Ø Accessor methods 
q numVertices():  Returns the number of vertices in the graph 

q numEdges():  Returns the number of vertices in the graph 

q getEdge(u, v): Returns edge from u to v 

q endVertices(e): an array of the two endvertices of e 

q opposite(v, e): the vertex opposite to v on e 

q outDegree(v): Returns number of outgoing edges 

q inDegree(v): Returns number of incoming edges 



Last Updated:  6 April 2015 
EECS 2011 
Prof. J. Elder - 19 - 

Main Methods of the Graph ADT 

Ø Update methods 
q insertVertex(x): insert a vertex storing element x 

q insertEdge(u, v, x): insert an edge (u,v) storing element x 

q removeVertex(v): remove vertex v (and its incident edges) 

q removeEdge(e): remove edge e 
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Main Methods of the Graph ADT 

Ø Iterator methods 
q incomingEdges(v): Incoming edges to v 

q outgoingEdges(v): Outgoing edges from v 

q vertices(): all vertices in the graph 

q edges(): all edges in the graph 
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Outline 

Ø Definitions 

Ø Graph ADT 

Ø  Implementations 
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GTG Implementation (net.datastructures) 

Ø  There are many ways to implement the Graph ADT. 

Ø We will follow the textbook implementation. 
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Vertex and Edge Lists 
Ø  A graph consists of a collection of vertices V and a collection of edges E. 

Ø  Each of these will be represented as a Positional List (Ch.7.3). 

Ø  In net.datastructures, Positional Lists are implemented as doubly-linked 
lists. 

trailer header nodes/positions 

Edges E 

trailer header nodes/positions 

Vertices V 
u v w z 

e f g h 



Last Updated:  6 April 2015 
EECS 2011 
Prof. J. Elder - 24 - 

Vertices and Edges 
Ø  Each vertex v stores an element containing information about the vertex. 

q  For example, if the graph represents course dependencies, the vertex element might 
store the course number.  

Ø  Each edge e stores an element containing information about the edge. 
q  e.g., pre-requisite, co-requisite.  

Ø  In addition, each edge must store references to the vertices it 
connects. 

2011 

3101 

Prereq. 
Vertex u 

Vertex v 

Edge e 
u 

v 
e Vertices Edge 
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Vertices and Edges 
Ø  To facilitate efficient removal of vertices and edges, we will make both 

location aware: 
q  A reference to the Position in the Positional List will be stored in the element. 

u Vertex 

prev next 

Vertex Position / Node 

Edge 

prev next 

Edge Position / Node 

e 
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Edge List Implementation 
Ø  This organization yields an Edge List Structure 
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Performance of Edge List Implementation 
Ø  Edge List implementation does not provide efficient access to edge 

information from vertex list. 
§  n vertices, m edges 
§  no parallel edges 
§  no self-loops 

Edge 
List 

Space n + m 

incomingEdges(v) 
outgoingEdges(v) 

m 

getEdge(u, v) m 

insertVertex(x) 1 

insertEdge(u, v, x) 1 

removeVertex(v) m 

removeEdge(e) 1 
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Other Graph Implementations 

Ø Can we come up with a graph implementation that 
improves the efficiency of these basic operations? 
q Adjacency List 

q Adjacency Map 

q Adjacency Matrix 
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Other Graph Implementations 
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improves the efficiency of these basic operations? 
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Adjacency List Implementation 
Ø  An Adjacency List implementation augments each vertex element with 

Positional Lists of incoming and outgoing edges. 

Vertex List Adjacency Lists 
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Adjacency List Implementation 
Ø  An Adjacency List implementation augments each vertex element with 

lists of incoming and outgoing edges. 
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Performance of Adjacency List Implementation 

Ø Adjacency List implementation improves efficiency 
without increasing space requirements. 

§  n vertices, m edges 
§  no parallel edges 
§  no self-loops 

Edge 
List 

Adjacency 
List 

Space n + m n + m 
incomingEdges(v) 
outgoingEdges(v) 

m deg(v) 

getEdge(u, v) m min(deg(u), deg(v)) 

insertVertex(x) 1 1 

insertEdge(u, v, x) 1 1 

removeVertex(v) m deg(v) 

removeEdge(e) 1 1 
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Other Graph Implementations 

Ø Can we come up with a graph implementation that 
improves the efficiency of these basic operations? 
q Adjacency List 

q Adjacency Map 

q Adjacency Matrix 
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Adjacency Map Implementation 
Ø  An Adjacency Map implementation augments each vertex element with 

an Adjacency Map of edges 
q  Each entry consists of: 

²  Key = opposite vertex  

²  Value = edge 

q  Implemented as a hash table. 

Vertex List Adjacency Maps 



Last Updated:  6 April 2015 
EECS 2011 
Prof. J. Elder - 35 - 

Performance of Adjacency Map Implementation 

Ø Adjacency Map implementation improves expected run 
time of getEdge(u,v): 

§  n vertices, m edges 
§  no parallel edges 
§  no self-loops 

Edge 
List 

Adjacency 
List 

Adjacency 
Map 

Space n + m n + m n + m 

incomingEdges(v), 
outgoingEdges(v) 

m deg(v) deg(v) 

getEdge(u, v) m min(deg(u), deg(v)) 1 (exp.) 

insertVertex(x) 1 1 1 

insertEdge(u, v, x) 1 1 1 (exp.) 

removeVertex(v) m deg(v) deg(v) 

removeEdge(e) 1 1 1 (exp.) 
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Other Graph Implementations 

Ø Can we come up with a graph implementation that 
improves the efficiency of these basic operations? 
q Adjacency List 

q Adjacency Map 

q Adjacency Matrix 
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Adjacency Matrix Implementation 
Ø  In an Adjacency Matrix implementation we map each of the n vertices to 

an integer index from [0…n-1]. 

Ø  Then a 2D n x n array A is maintained: 
q  If edge (i, j) exists, A[i, j] stores a reference to the edge. 

q  If edge (i, j) does not exist, A[i, j] is set to null. 

Vertex List Adjacency Matrix 
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Adjacency Matrix Structure 

u 
v 

w 
a b 

0 1 2 

0 Ø Ø 

1 Ø 

2 Ø Ø a 

u v w 0 1 2 

b 
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Performance of Adjacency Matrix Implementation 
Ø  Requires more space. 

Ø  Slow to get incoming / outgoing edges 

Ø  Very slow to insert or remove a vertex (array must be resized) 
§  n vertices, m edges 
§  no parallel edges 
§  no self-loops 

Edge 
List 

Adjacency 
List 

Adjacency 
Map 

Adjacency 
Matrix 

Space n + m n + m n + m n2 

incomingEdges(v), 
outgoingEdges(v) 

m deg(v) deg(v) n 

getEdge(u, v) m min(deg(u), deg(v)) 1 (exp.) 1 

insertVertex(x) 1 1 1 n2 

insertEdge(u, v, x) 1 1 1 (exp.) 1 

removeVertex(v) m deg(v) deg(v) n2 

removeEdge(e) 1 1 1 (exp.) 1 
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A4Q2:  Course Prerequisites 

Ø  In most post-secondary programs, courses have 
prerequisites. 

Ø  For example, you cannot take EECS 3101 until you have 
passed EECS 2011. 

Ø How can we represent such a system of dependencies? 

Ø A natural choice is a directed graph. 
q Each vertex represents a course 

q Each directed edge represents a prerequisite 
² A directed edge from Course U to Course V means that Course U 

must be taken before Course V. 

2011 3101 
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A4Q2:  Course Prerequisites 

Ø We also want to be able to find the information for a 
particular course quickly. 

Ø  The course number provides a convenient key that can 
be used to organize course records in a sorted map, 
implemented as a binary search tree (cf. A3Q1). 

Ø  Thus it makes sense to represent courses using both a 
sorted map (for efficient access) and a directed graph (to 
represent dependencies). 

Ø By storing a reference to the directed graph vertex for a 
course in the sorted map, we can efficiently access  
course dependencies. 
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A4Q2:  Course Prerequisites 

Sorted Map Directed Graph 

Key:  2011 
Value: 
•  Number: 2011 
•  Name:  “Data Structures” 
•  Vertex: 

2011 3101 
(K1,V1) 

(K2,V2) 

(K3,V3) 
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A4Q2:  Course Prerequisites 

Ø  It is important that the course prerequisite graph be a 
directed acyclic graph (DAG).  Why? 

2011 3101 

3121 
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A4Q2:  Course Prerequisites 

Ø  In this question, you are provided with a basic 
implementation of a system to represent courses and 
dependencies. 

Ø Methods for adding courses and getting prerequisites 
are provided. 

Ø You need only write the method for adding a 
prerequisite. 

Ø  This method will use a depth-first-search algorithm (also 
provided) that can be used to prevent the addition of 
prerequisites that introduce cycles. 
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A4Q2:  Implementation using net.datastructures 

Ø We use the TreeMap class 
to represent the sorted map 
(cf. A3Q1).  

Sorted Map 

Key:  2011 
Value: 
•  Number: 2011 
•  Name:  “Data Structures” 
•  Vertex: 

(K1,V1) 

(K2,V2) 

(K3,V3) 

Map 

AbstractSortedMap 

AbstractMap SortedMap 

TreeMap 
Entry 

MapEntry 
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A4Q2:  Implementation using net.datastructures 
Ø  We use the AdjacencyMapGraph class to represent the directed graph.  

Ø  This implementation uses ProbeHashMap, a linear probe hash table, to 
represent the incoming and outgoing edges for each vertex. 

Directed Graph 

2011 3101 Graph 

AdjacencyMapGraph 

Map 

AbstractHashMap 

AbstractMap 

ProbeHashMap 
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Outline 
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Ø Graph ADT 

Ø  Implementations 
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Outcomes 

Ø By understanding this lecture, you should be able to: 
q Define basic terminology of graphs. 

q Use a graph ADT for appropriate applications. 

q Program standard implementations of the graph ADT. 

q Understand advantages and disadvantages of these 
implementations, in terms of space and run time. 


