Graphs – ADTs and Implementations

Applications of Graphs

- Electronic circuits
 Printed circuit board
 Integrated circuit
 Transportation networks
 Highway network
 Flight network
- Computer networks
 - Local area network
 - Internet

EECS 2011

- Web
- Databases
 - Entity-relationship diagram

Outcomes

> By understanding this lecture, you should be able to:

- Define basic terminology of graphs.
- □ Use a graph ADT for appropriate applications.
- □ Program standard implementations of the graph ADT.
- Understand advantages and disadvantages of these implementations, in terms of space and run time.

Outline

- 4 -

Definitions

- Graph ADT
- Implementations

Outline

Definitions

Graph ADT

Implementations

Edge Types

Directed edge

- \Box ordered pair of vertices (*u*,*v*)
- \Box first vertex *u* is the origin
- \Box second vertex *v* is the destination
- e.g., a flight
- Undirected edge
 - \Box unordered pair of vertices (*u*,*v*)
 - e.g., a flight route
- Directed graph (Digraph)
 - □ all the edges are directed
 - e.g., route network
- Undirected graph

EECS 2011

- □ all the edges are undirected
- e.g., flight network

Vertices and Edges

- End vertices (or endpoints) of an edge
 - U and V are the endpoints of a
- Edges incident on a vertex
 a, d, and b are incident on V
- Adjacent vertices
 - U and V are adjacent
- Degree of a vertex
 - □ X has degree 5
- Parallel edges
 - □ h and i are parallel edges
- Self-loop
 - □ j is a self-loop

EECS 2011

Graphs

- > A graph is a pair (V, E), where
 - □ *V* is a set of nodes, called vertices
 - \Box *E* is a collection of pairs of vertices, called edges
 - Vertices and edges are positions and store elements
- > Example:

- □ A vertex represents an airport and stores the three-letter airport code
- An edge represents a flight route between two airports and stores the mileage of the route

Paths

Path

- sequence of alternating vertices and edges
- □ begins with a vertex
- ends with a vertex
- each edge is preceded and followed by its endpoints
- Simple path
 - path such that all its vertices and edges are distinct
- Examples
 - \square P₁=(V,b,X,h,Z) is a simple path
 - P₂=(U,c,W,e,X,g,Y,f,W,d,V) is a path that is not simple

Cycles

Cycle

- circular sequence of alternating vertices and edges
- each edge is preceded and followed by its endpoints
- Simple cycle
 - cycle such that all its vertices and edges are distinct
- Examples
 - C₁=(V,b,X,g,Y,f,W,c,U,a,V) is a simple cycle
 - □ C₂=(U,c,W,e,X,g,Y,f,W,d,V,a,U) is a cycle that is not simple

Subgraphs

- A subgraph S of a graph G is a graph such that
 - The vertices of S are a subset of the vertices of G
 - The edges of S are a subset of the edges of G
- A spanning subgraph of G is a subgraph that contains all the vertices of G

Connectivity

- A graph is connected if there is a path between every pair of vertices
- A connected component of a graph G is a maximal connected subgraph of G

Non connected graph with two connected components

Trees

A tree is a connected, acyclic, undirected graph. A forest is a set of trees (not necessarily connected)

Spanning Trees

- A spanning tree of a connected graph is a spanning subgraph that is a tree
- A spanning tree is not unique unless the graph is a tree
- Spanning trees have applications to the design of communication networks
- A spanning forest of a graph is a spanning subgraph that is a forest

Reachability in Directed Graphs

- A node w is *reachable* from v if there is a directed path originating at v and terminating at w.
 - □ E is reachable from B
 - □ B is not reachable from E

Properties

Outline

Definitions

- Graph ADT
- Implementations

Main Methods of the Graph ADT

Accessor methods

- **InumVertices():** Returns the number of vertices in the graph
- **InumEdges()**: Returns the number of vertices in the graph
- □getEdge(u, v): Returns edge from u to v
- left an array of the two endvertices of e
- Dopposite(v, e): the vertex opposite to v on e
- DoutDegree(v): Returns number of outgoing edges
- DinDegree(v): Returns number of incoming edges

Main Methods of the Graph ADT

Update methods

- □insertVertex(x): insert a vertex storing element x
- □insertEdge(u, v, x): insert an edge (u,v) storing element x
- □removeVertex(v): remove vertex v (and its incident edges)
- □removeEdge(e): remove edge e

Main Methods of the Graph ADT

Iterator methods

- □incomingEdges(v): Incoming edges to v
- DoutgoingEdges(v): Outgoing edges from v
- □vertices(): all vertices in the graph
- ledges(): all edges in the graph

Outline

Definitions

- Graph ADT
- Implementations

GTG Implementation (net.datastructures)

- > There are many ways to implement the Graph ADT.
- > We will follow the textbook implementation.

Vertex and Edge Lists

- A graph consists of a collection of vertices V and a collection of edges E.
- Each of these will be represented as a Positional List (Ch.7.3).
- In net.datastructures, Positional Lists are implemented as doubly-linked lists.

Vertices and Edges

Each vertex v stores an element containing information about the vertex.

- □ For example, if the graph represents course dependencies, the vertex element might store the course number.
- Each edge e stores an element containing information about the edge.
 e.g., pre-requisite, co-requisite.
- In addition, each edge must store references to the vertices it connects.

Vertices and Edges

To facilitate efficient removal of vertices and edges, we will make both location aware:

□ A reference to the Position in the Positional List will be stored in the element.

Edge List Implementation

This organization yields an Edge List Structure

Performance of Edge List Implementation

Edge List implementation does not provide efficient access to edge information from vertex list.

 <i>n</i> vertices, <i>m</i> edges no parallel edges no self-loops 	Edge List
Space	n + m
<pre>incomingEdges(v) outgoingEdges(v)</pre>	т
getEdge(u, v)	т
insertVertex(x)	1
insertEdge(u, v, x)	1
removeVertex(v)	m
removeEdge(e)	1

Other Graph Implementations

Can we come up with a graph implementation that improves the efficiency of these basic operations?

- Adjacency List
- Adjacency Map
- □ Adjacency Matrix

Other Graph Implementations

- Can we come up with a graph implementation that improves the efficiency of these basic operations?
 - Adjacency List
 - Adjacency Map
 - Adjacency Matrix

Adjacency List Implementation

An Adjacency List implementation augments each vertex element with Positional Lists of incoming and outgoing edges.

Adjacency List Implementation

An Adjacency List implementation augments each vertex element with lists of incoming and outgoing edges.

Performance of Adjacency List Implementation

Adjacency List implementation improves efficiency without increasing space requirements.

 <i>n</i> vertices, <i>m</i> edges no parallel edges no self-loops 	Edge List	Adjacency List
Space	n+m	n + m
<pre>incomingEdges(v) outgoingEdges(v)</pre>	т	deg(v)
getEdge(u, v)	т	$\min(\deg(u), \deg(v))$
insertVertex(x)	1	1
insertEdge(u, v, x)	1	1
removeVertex(v)	m	deg(v)
removeEdge(e)	1	1

Other Graph Implementations

Can we come up with a graph implementation that improves the efficiency of these basic operations?

Adjacency List

- Adjacency Map
- □ Adjacency Matrix

Adjacency Map Implementation

An Adjacency Map implementation augments each vertex element with an Adjacency Map of edges

- □ Each entry consists of:
 - Key = opposite vertex
 - ♦ Value = edge

EECS 2011

Prof. J. Elder

□ Implemented as a hash table.

Performance of Adjacency Map Implementation

Adjacency Map implementation improves expected run time of getEdge(u,v):

 <i>n</i> vertices, <i>m</i> edges no parallel edges no self-loops 	Edge List	Adjacency List	Adjacency Map
Space	n+m	n + m	n + m
incomingEdges(v), outgoingEdges(v)	т	deg(v)	deg(v)
getEdge(u, v)	т	$\min(\deg(u), \deg(v))$	1 (exp.)
insertVertex(x)	1	1	1
insertEdge(u, v, x)	1	1	1 (exp.)
removeVertex(v)	т	deg(v)	deg(v)
removeEdge(e)	1	1	1 (exp.)

EECS 2011 Prof. J. Elder

Other Graph Implementations

Can we come up with a graph implementation that improves the efficiency of these basic operations?

- Adjacency List
- Adjacency Map
- Adjacency Matrix

Adjacency Matrix Implementation

- In an Adjacency Matrix implementation we map each of the n vertices to an integer index from [0...n-1].
- > Then a 2D n x n array A is maintained:
 - □ If edge (i, j) exists, A[i, j] stores a reference to the edge.
 - □ If edge (i, j) does not exist, A[i, j] is set to null.

Adjacency Matrix Structure

Performance of Adjacency Matrix Implementation

- Requires more space.
- Slow to get incoming / outgoing edges
- Very slow to insert or remove a vertex (array must be resized)

 <i>n</i> vertices, <i>m</i> edges no parallel edges no self-loops 	Edge List	Adjacency List	Adjacency Map	Adjacency Matrix
Space	n+m	n + m	n + m	n ²
<pre>incomingEdges(v), outgoingEdges(v)</pre>	т	deg(v)	deg(v)	п
getEdge(u, v)	т	$\min(\deg(u), \deg(v))$	1 (exp.)	1
insertVertex(x)	1	1	1	n ²
insertEdge(<i>u</i> , <i>v</i> , <i>x</i>)	1	1	1 (exp.)	1
removeVertex(v)	т	deg(v)	deg(v)	n ²
removeEdge(e)	1	1	1 (exp.)	1

- In most post-secondary programs, courses have prerequisites.
- For example, you cannot take EECS 3101 until you have passed EECS 2011.
- How can we represent such a system of dependencies?
- > A natural choice is a **directed graph**.
 - Each vertex represents a course
 - □ Each directed edge represents a prerequisite
 - A directed edge from Course U to Course V means that Course U must be taken before Course V.

- We also want to be able to find the information for a particular course quickly.
- The course number provides a convenient key that can be used to organize course records in a sorted map, implemented as a binary search tree (cf. A3Q1).
- Thus it makes sense to represent courses using both a sorted map (for efficient access) and a directed graph (to represent dependencies).
- By storing a reference to the directed graph vertex for a course in the sorted map, we can efficiently access course dependencies.

It is important that the course prerequisite graph be a directed acyclic graph (DAG). Why?

- In this question, you are provided with a basic implementation of a system to represent courses and dependencies.
- Methods for adding courses and getting prerequisites are provided.
- You need only write the method for adding a prerequisite.
- This method will use a depth-first-search algorithm (also provided) that can be used to prevent the addition of prerequisites that introduce cycles.

A4Q2: Implementation using net.datastructures

A4Q2: Implementation using net.datastructures

- > We use the **AdjacencyMapGraph** class to represent the directed graph.
- This implementation uses ProbeHashMap, a linear probe hash table, to represent the incoming and outgoing edges for each vertex.

Outline

Definitions

- Graph ADT
- Implementations

Outcomes

> By understanding this lecture, you should be able to:

- Define basic terminology of graphs.
- □ Use a graph ADT for appropriate applications.
- Program standard implementations of the graph ADT.
- Understand advantages and disadvantages of these implementations, in terms of space and run time.

