
Last Updated: 6 April 2015
EECS 2011
Prof. J. Elder - 1 -

Graphs – ADTs and Implementations

ORD

DFW

SFO

LAX

80
2

1843

1233

337

Last Updated: 6 April 2015
EECS 2011
Prof. J. Elder - 2 -

John

DavidPaul

brown.edu

cox.net

cs.brown.edu

att.net
qwest.net

math.brown.edu

cslab1bcslab1a

Applications of Graphs
Ø  Electronic circuits

q  Printed circuit board

q  Integrated circuit

Ø  Transportation networks
q  Highway network

q  Flight network

Ø  Computer networks
q  Local area network

q  Internet

q Web

Ø  Databases
q  Entity-relationship diagram

Last Updated: 6 April 2015
EECS 2011
Prof. J. Elder - 3 -

Outcomes

Ø By understanding this lecture, you should be able to:
q Define basic terminology of graphs.

q Use a graph ADT for appropriate applications.

q Program standard implementations of the graph ADT.

q Understand advantages and disadvantages of these
implementations, in terms of space and run time.

Last Updated: 6 April 2015
EECS 2011
Prof. J. Elder - 4 -

Outline

Ø Definitions

Ø Graph ADT

Ø  Implementations

Last Updated: 6 April 2015
EECS 2011
Prof. J. Elder - 5 -

Outline

Ø Definitions

Ø Graph ADT

Ø  Implementations

Last Updated: 6 April 2015
EECS 2011
Prof. J. Elder - 6 -

Edge Types
Ø  Directed edge

q  ordered pair of vertices (u,v)

q  first vertex u is the origin

q  second vertex v is the destination

q  e.g., a flight

Ø  Undirected edge
q  unordered pair of vertices (u,v)

q  e.g., a flight route

Ø  Directed graph (Digraph)
q  all the edges are directed

q  e.g., route network

Ø  Undirected graph
q  all the edges are undirected

q  e.g., flight network

ORD PVD

flight
AA 1206

ORD PVD

849
miles

Last Updated: 6 April 2015
EECS 2011
Prof. J. Elder - 7 -

Vertices and Edges
Ø  End vertices (or endpoints) of

an edge
q  U and V are the endpoints of a

Ø  Edges incident on a vertex
q  a, d, and b are incident on V

Ø  Adjacent vertices
q  U and V are adjacent

Ø  Degree of a vertex
q  X has degree 5

Ø  Parallel edges
q  h and i are parallel edges

Ø  Self-loop
q  j is a self-loop

X U

V

W

Z

Y

a

c

b

e

d

f

g

h

i

j

Last Updated: 6 April 2015
EECS 2011
Prof. J. Elder - 8 -

Graphs
Ø  A graph is a pair (V, E), where

q  V is a set of nodes, called vertices

q  E is a collection of pairs of vertices, called edges

q  Vertices and edges are positions and store elements

Ø  Example:
q  A vertex represents an airport and stores the three-letter airport code

q  An edge represents a flight route between two airports and stores the
mileage of the route

ORD
PVD

MIA
DFW

SFO

LAX

LGA

HNL

849

80
2

1843

1120
1233

337 2555

Last Updated: 6 April 2015
EECS 2011
Prof. J. Elder - 9 -

P1

Paths

Ø  Path
q  sequence of alternating

vertices and edges

q  begins with a vertex

q  ends with a vertex

q  each edge is preceded and
followed by its endpoints

Ø  Simple path
q  path such that all its vertices

and edges are distinct

Ø  Examples
q  P1=(V,b,X,h,Z) is a simple path

q  P2=(U,c,W,e,X,g,Y,f,W,d,V) is a
path that is not simple

X U

V

W

Z

Y

a

c

b

e

d

f

g

h P2

Last Updated: 6 April 2015
EECS 2011
Prof. J. Elder - 10 -

Cycles

Ø  Cycle
q  circular sequence of alternating

vertices and edges

q  each edge is preceded and
followed by its endpoints

Ø  Simple cycle
q  cycle such that all its vertices

and edges are distinct

Ø  Examples
q  C1=(V,b,X,g,Y,f,W,c,U,a,V) is a

simple cycle

q  C2=(U,c,W,e,X,g,Y,f,W,d,V,a,U)
is a cycle that is not simple

C1

X U

V

W

Z

Y

a

c

b

e

d

f

g

h C2

Last Updated: 6 April 2015
EECS 2011
Prof. J. Elder - 11 -

Subgraphs

Ø A subgraph S of a graph
G is a graph such that
q The vertices of S are a

subset of the vertices of G

q The edges of S are a
subset of the edges of G

Ø A spanning subgraph of
G is a subgraph that
contains all the vertices of
G

Subgraph

Spanning subgraph

Last Updated: 6 April 2015
EECS 2011
Prof. J. Elder - 12 -

Connectivity
Ø A graph is connected if

there is a path between
every pair of vertices

Ø A connected component
of a graph G is a maximal
connected subgraph of G

Connected graph

Non connected graph with two
connected components

Last Updated: 6 April 2015
EECS 2011
Prof. J. Elder - 13 -

Trees

Tree Forest Graph with Cycle

A tree is a connected, acyclic, undirected graph.

A forest is a set of trees (not necessarily connected)

Last Updated: 6 April 2015
EECS 2011
Prof. J. Elder - 14 -

Spanning Trees

Ø  A spanning tree of a connected
graph is a spanning subgraph that
is a tree

Ø  A spanning tree is not unique
unless the graph is a tree

Ø  Spanning trees have applications
to the design of communication
networks

Ø  A spanning forest of a graph is a
spanning subgraph that is a forest

Graph

Spanning tree

Last Updated: 6 April 2015
EECS 2011
Prof. J. Elder - 15 -

Reachability in Directed Graphs
Ø A node w is reachable from v if there is a directed path

originating at v and terminating at w.
q E is reachable from B

q B is not reachable from E

A

C

E

B

D

F

Last Updated: 6 April 2015
EECS 2011
Prof. J. Elder - 16 -

Properties

Notation
 |V| number of vertices

 |E| number of edges

deg(v) degree of vertex v

Property 1

Σv deg(v) = 2|E|

Proof: each edge is counted
twice

Property 2
In an undirected graph with no

self-loops and no multiple
edges

 |E| ≤ |V| (|V| - 1)/2

Proof: each vertex has degree
at most (|V| – 1)

Example
n  |V| = 4
n  |E| = 6
n  deg(v) = 3

A : E ≤ V (V −1)
Q: What is the bound for a digraph?

Last Updated: 6 April 2015
EECS 2011
Prof. J. Elder - 17 -

Outline

Ø Definitions

Ø Graph ADT

Ø  Implementations

Last Updated: 6 April 2015
EECS 2011
Prof. J. Elder - 18 -

Main Methods of the Graph ADT

Ø Accessor methods
q numVertices(): Returns the number of vertices in the graph

q numEdges(): Returns the number of vertices in the graph

q getEdge(u, v): Returns edge from u to v

q endVertices(e): an array of the two endvertices of e

q opposite(v, e): the vertex opposite to v on e

q outDegree(v): Returns number of outgoing edges

q inDegree(v): Returns number of incoming edges

Last Updated: 6 April 2015
EECS 2011
Prof. J. Elder - 19 -

Main Methods of the Graph ADT

Ø Update methods
q insertVertex(x): insert a vertex storing element x

q insertEdge(u, v, x): insert an edge (u,v) storing element x

q removeVertex(v): remove vertex v (and its incident edges)

q removeEdge(e): remove edge e

Last Updated: 6 April 2015
EECS 2011
Prof. J. Elder - 20 -

Main Methods of the Graph ADT

Ø Iterator methods
q incomingEdges(v): Incoming edges to v

q outgoingEdges(v): Outgoing edges from v

q vertices(): all vertices in the graph

q edges(): all edges in the graph

Last Updated: 6 April 2015
EECS 2011
Prof. J. Elder - 21 -

Outline

Ø Definitions

Ø Graph ADT

Ø  Implementations

Last Updated: 6 April 2015
EECS 2011
Prof. J. Elder - 22 -

GTG Implementation (net.datastructures)

Ø  There are many ways to implement the Graph ADT.

Ø We will follow the textbook implementation.

Last Updated: 6 April 2015
EECS 2011
Prof. J. Elder - 23 -

Vertex and Edge Lists
Ø  A graph consists of a collection of vertices V and a collection of edges E.

Ø  Each of these will be represented as a Positional List (Ch.7.3).

Ø  In net.datastructures, Positional Lists are implemented as doubly-linked
lists.

trailer header nodes/positions

Edges E

trailer header nodes/positions

Vertices V
u v w z

e f g h

Last Updated: 6 April 2015
EECS 2011
Prof. J. Elder - 24 -

Vertices and Edges
Ø  Each vertex v stores an element containing information about the vertex.

q  For example, if the graph represents course dependencies, the vertex element might
store the course number.

Ø  Each edge e stores an element containing information about the edge.
q  e.g., pre-requisite, co-requisite.

Ø  In addition, each edge must store references to the vertices it
connects.

2011

3101

Prereq.
Vertex u

Vertex v

Edge e
u

v
e Vertices Edge

Last Updated: 6 April 2015
EECS 2011
Prof. J. Elder - 25 -

Vertices and Edges
Ø  To facilitate efficient removal of vertices and edges, we will make both

location aware:
q  A reference to the Position in the Positional List will be stored in the element.

u Vertex

prev next

Vertex Position / Node

Edge

prev next

Edge Position / Node

e

Last Updated: 6 April 2015
EECS 2011
Prof. J. Elder - 26 -

Edge List Implementation
Ø  This organization yields an Edge List Structure

v

u

w

a c
b

e

z
d

u v w z

f g h

Vertex List

Edge List

Last Updated: 6 April 2015
EECS 2011
Prof. J. Elder - 27 -

Performance of Edge List Implementation
Ø  Edge List implementation does not provide efficient access to edge

information from vertex list.
§  n vertices, m edges
§  no parallel edges
§  no self-loops

Edge
List

Space n + m

incomingEdges(v)
outgoingEdges(v)

m

getEdge(u, v) m

insertVertex(x) 1

insertEdge(u, v, x) 1

removeVertex(v) m

removeEdge(e) 1

Last Updated: 6 April 2015
EECS 2011
Prof. J. Elder - 28 -

Other Graph Implementations

Ø Can we come up with a graph implementation that
improves the efficiency of these basic operations?
q Adjacency List

q Adjacency Map

q Adjacency Matrix

Last Updated: 6 April 2015
EECS 2011
Prof. J. Elder - 29 -

Other Graph Implementations

Ø Can we come up with a graph implementation that
improves the efficiency of these basic operations?
q Adjacency List

q Adjacency Map

q Adjacency Matrix

Last Updated: 6 April 2015
EECS 2011
Prof. J. Elder - 30 -

Adjacency List Implementation
Ø  An Adjacency List implementation augments each vertex element with

Positional Lists of incoming and outgoing edges.

Vertex List Adjacency Lists

Last Updated: 6 April 2015
EECS 2011
Prof. J. Elder - 31 -

Adjacency List Implementation
Ø  An Adjacency List implementation augments each vertex element with

lists of incoming and outgoing edges.

u
v

w
a b

a

u v w

b

Vertex List

Edge List

Adjacency Lists

Last Updated: 6 April 2015
EECS 2011
Prof. J. Elder - 32 -

Performance of Adjacency List Implementation

Ø Adjacency List implementation improves efficiency
without increasing space requirements.

§  n vertices, m edges
§  no parallel edges
§  no self-loops

Edge
List

Adjacency
List

Space n + m n + m
incomingEdges(v)
outgoingEdges(v)

m deg(v)

getEdge(u, v) m min(deg(u), deg(v))

insertVertex(x) 1 1

insertEdge(u, v, x) 1 1

removeVertex(v) m deg(v)

removeEdge(e) 1 1

Last Updated: 6 April 2015
EECS 2011
Prof. J. Elder - 33 -

Other Graph Implementations

Ø Can we come up with a graph implementation that
improves the efficiency of these basic operations?
q Adjacency List

q Adjacency Map

q Adjacency Matrix

Last Updated: 6 April 2015
EECS 2011
Prof. J. Elder - 34 -

Adjacency Map Implementation
Ø  An Adjacency Map implementation augments each vertex element with

an Adjacency Map of edges
q  Each entry consists of:

²  Key = opposite vertex

²  Value = edge

q  Implemented as a hash table.

Vertex List Adjacency Maps

Last Updated: 6 April 2015
EECS 2011
Prof. J. Elder - 35 -

Performance of Adjacency Map Implementation

Ø Adjacency Map implementation improves expected run
time of getEdge(u,v):

§  n vertices, m edges
§  no parallel edges
§  no self-loops

Edge
List

Adjacency
List

Adjacency
Map

Space n + m n + m n + m

incomingEdges(v),
outgoingEdges(v)

m deg(v) deg(v)

getEdge(u, v) m min(deg(u), deg(v)) 1 (exp.)

insertVertex(x) 1 1 1

insertEdge(u, v, x) 1 1 1 (exp.)

removeVertex(v) m deg(v) deg(v)

removeEdge(e) 1 1 1 (exp.)

Last Updated: 6 April 2015
EECS 2011
Prof. J. Elder - 36 -

Other Graph Implementations

Ø Can we come up with a graph implementation that
improves the efficiency of these basic operations?
q Adjacency List

q Adjacency Map

q Adjacency Matrix

Last Updated: 6 April 2015
EECS 2011
Prof. J. Elder - 37 -

Adjacency Matrix Implementation
Ø  In an Adjacency Matrix implementation we map each of the n vertices to

an integer index from [0…n-1].

Ø  Then a 2D n x n array A is maintained:
q  If edge (i, j) exists, A[i, j] stores a reference to the edge.

q  If edge (i, j) does not exist, A[i, j] is set to null.

Vertex List Adjacency Matrix

Last Updated: 6 April 2015
EECS 2011
Prof. J. Elder - 38 -

Adjacency Matrix Structure

u
v

w
a b

0 1 2

0 Ø Ø

1 Ø

2 Ø Ø a

u v w 0 1 2

b

Last Updated: 6 April 2015
EECS 2011
Prof. J. Elder - 39 -

Performance of Adjacency Matrix Implementation
Ø  Requires more space.

Ø  Slow to get incoming / outgoing edges

Ø  Very slow to insert or remove a vertex (array must be resized)
§  n vertices, m edges
§  no parallel edges
§  no self-loops

Edge
List

Adjacency
List

Adjacency
Map

Adjacency
Matrix

Space n + m n + m n + m n2

incomingEdges(v),
outgoingEdges(v)

m deg(v) deg(v) n

getEdge(u, v) m min(deg(u), deg(v)) 1 (exp.) 1

insertVertex(x) 1 1 1 n2

insertEdge(u, v, x) 1 1 1 (exp.) 1

removeVertex(v) m deg(v) deg(v) n2

removeEdge(e) 1 1 1 (exp.) 1

Last Updated: 6 April 2015
EECS 2011
Prof. J. Elder - 40 -

A4Q2: Course Prerequisites

Ø  In most post-secondary programs, courses have
prerequisites.

Ø  For example, you cannot take EECS 3101 until you have
passed EECS 2011.

Ø How can we represent such a system of dependencies?

Ø A natural choice is a directed graph.
q Each vertex represents a course

q Each directed edge represents a prerequisite
² A directed edge from Course U to Course V means that Course U

must be taken before Course V.

2011 3101

Last Updated: 6 April 2015
EECS 2011
Prof. J. Elder - 41 -

A4Q2: Course Prerequisites

Ø We also want to be able to find the information for a
particular course quickly.

Ø  The course number provides a convenient key that can
be used to organize course records in a sorted map,
implemented as a binary search tree (cf. A3Q1).

Ø  Thus it makes sense to represent courses using both a
sorted map (for efficient access) and a directed graph (to
represent dependencies).

Ø By storing a reference to the directed graph vertex for a
course in the sorted map, we can efficiently access
course dependencies.

Last Updated: 6 April 2015
EECS 2011
Prof. J. Elder - 42 -

A4Q2: Course Prerequisites

Sorted Map Directed Graph

Key: 2011
Value:
•  Number: 2011
•  Name: “Data Structures”
•  Vertex:

2011 3101
(K1,V1)

(K2,V2)

(K3,V3)

Last Updated: 6 April 2015
EECS 2011
Prof. J. Elder - 43 -

A4Q2: Course Prerequisites

Ø  It is important that the course prerequisite graph be a
directed acyclic graph (DAG). Why?

2011 3101

3121

Last Updated: 6 April 2015
EECS 2011
Prof. J. Elder - 44 -

A4Q2: Course Prerequisites

Ø  In this question, you are provided with a basic
implementation of a system to represent courses and
dependencies.

Ø Methods for adding courses and getting prerequisites
are provided.

Ø You need only write the method for adding a
prerequisite.

Ø  This method will use a depth-first-search algorithm (also
provided) that can be used to prevent the addition of
prerequisites that introduce cycles.

Last Updated: 6 April 2015
EECS 2011
Prof. J. Elder - 45 -

A4Q2: Implementation using net.datastructures

Ø We use the TreeMap class
to represent the sorted map
(cf. A3Q1).

Sorted Map

Key: 2011
Value:
•  Number: 2011
•  Name: “Data Structures”
•  Vertex:

(K1,V1)

(K2,V2)

(K3,V3)

Map

AbstractSortedMap

AbstractMap SortedMap

TreeMap
Entry

MapEntry

Last Updated: 6 April 2015
EECS 2011
Prof. J. Elder - 46 -

A4Q2: Implementation using net.datastructures
Ø  We use the AdjacencyMapGraph class to represent the directed graph.

Ø  This implementation uses ProbeHashMap, a linear probe hash table, to
represent the incoming and outgoing edges for each vertex.

Directed Graph

2011 3101 Graph

AdjacencyMapGraph

Map

AbstractHashMap

AbstractMap

ProbeHashMap

Last Updated: 6 April 2015
EECS 2011
Prof. J. Elder - 47 -

Outline

Ø Definitions

Ø Graph ADT

Ø  Implementations

Last Updated: 6 April 2015
EECS 2011
Prof. J. Elder - 48 -

Outcomes

Ø By understanding this lecture, you should be able to:
q Define basic terminology of graphs.

q Use a graph ADT for appropriate applications.

q Program standard implementations of the graph ADT.

q Understand advantages and disadvantages of these
implementations, in terms of space and run time.

